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=PFL  Why we need nanoscale microscopy
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Why isiit difficult to measure small things?
The diffraction limit

In any (far field) microscopy system
where we create a magnified image of
an object via an image projection using
diffractive elements (such as lenses) we
run into the diffraction limit:

Point sources (with zero size) are
projected to an Airy disk with a certain
size. Two point sources that are close
together will result in two Airy disks
close together. If the disks are too close
together they can no longer be
separated based on their intensity. That
is then the resolution limit of the
microscope.

Point Source
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Imaged Spot Size
(High NA)

Point Source

Objective
Aperture

18 Units
Imaged Spot Size
(Low NA)
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What determines the achievable resolution

Abbe Resolution, , = A/2NA

= A... Wavelength

= NA ... Numerical aperture

What can we do to get around this?

= Work with smaller wavelengths: instead of photons use particles with much
smaller wavelength (such as electrons: de Broglie wavelength of an electron
with acceleration voltage of 10kV = 1,22:10"*m, which is 40’000 times smaller
than that of a photon). That is what we use in electron microscopy

= Try to use non far field microscopy techniques (near field techniques or
scanning probe techniques). This is wat we do in atomic force microscopy
(AFM) or scanning near field optical microscopy (SNOM)



=PFL  Resolution is NOT everything...

...but it’s sure nice to have a good one

@ Comparison of resolution of other microscopes
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Whatis an AFM?

(don’t be fooled by the word atomic)
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“Scanning Force
Microscopy “SFM

Force

set point

The AFM measures the effect of
forces acting on the sharp tip on a
spring as a function of the position on

the surface. — sometimes these
forces are due to topography




=PrL 1t all started with 7unneling ...

= Binnig, Gerber, Rohrer, Wiebel
Tunneling through a controller
vacuum gap.(Applied Physics
Letters 40, 178 (1982)

= “This investigation is the first

step towards the development
Scanning tunnelling microscopy was

of .Scann Ing tunnel Ing invented by Gerd Binnig (right) and
microscopy, where the surface Heinrich Rohrer (left) in 1981. They were
awarded the Nobel Prize in 1986.

is scanned by a tunnel current
and should open the door to a
new area of surface studies.”
...but only for conducting samples!



PFL - The AFM...

* G. Binnig, C. F. Quate and Ch. Gerber, PRL 56, 930 (1986)

(a)
[scanmers. recomack], i
-/ _FRONT ATOM AFM {
BLOCK (ALUMINUM) L Z
Y
(b) 25um o |-
A: AFM SAMPLE s 25 mm
FIG. 1. Description of the principle operation of an STM B: AFM DIAMOND TIP DIAMOND
as well as that of an AFM. The tip follows contour B, in one C: STM TIP (Au) e -I
case 1o keep the tunneling current constant (STM) and in C: %#?\‘nTISLAEI\XFE’EE 8mm
the other to maintain constant force between tip and sample .
( , PRI S : E: MODULATING PIEZO LEVER J
AFM, sample, and tip either insulating or conducting), £ VITON {Au-FOIL)
The STM itsell may probe forces when a periodic force on
the adatom A varies its position in the gap and modulates FIG. 2. Experimental setup. The lever is not to scale in
the tunneling current in the STM. The force can come from (a). Its dimensions are given in (b). The STM and AFM
an ac voltage on the tip, or from an externally applied mag- piezoelectric drives are facing each other, sandwiching the
netic field for adatoms with a magnetic moment. diamond tip that is glued to the lever.

= Binnig invented the AFM 1n 1986, and while Binnig and Gerber were on a
sabbatical in IBM Almaden they collaborated with Calvin Quate (Stanford) to
produce the first working prototype



EPFL ... Became a Versatile Tool for Nanoscale Measurements

Surface

Cantilever

conductivity, surface potential, electrochemical potential, ion currents, magnetism, NMR....and many
more
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Single molecule resolution

High resolution imaging in aqueous solution
Nanomanipulation

Single molecule mechanics

Imaging of living cells



=PFL  Single molecule resolution

Plasmid DNA on mica

= Single molecules can
be easily resolved

= Even the double helix!

e e T |

e e S Rl L e et |
REVFVFVEVF RN _10nm__
= Pyne etal. Small, 10, Nr16, 2014

Source: SciencePhotoLibrary
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High resolution images in fluid of
proteins

= Imaging of membranes and membrane bound proteins
= |maging of live cells

From Review Nature Nanotechnology 2008,D. Mdller and I. Dufren,

14
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=PFL AFM can be used for Nanomanipulation

= AFM patterning of a silicon
surface using anodic oxidation

= Other approaches have been
developed such as
« dip-pen nanolithography and
* Thermal scanning probe
lithography (tSPL)

Image from:
http://www.veeco.convlibrary/nanotheater

- Image from: https://www.swisslitho.com
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Different types of scanning probe

microscopes

= SPM = scanning probe microscopy

= AFM= Atomic force microscopy
(AFM), also known as

= SFM =scanning force microscopy

= STM scanning tunneling
microscopy

= SSETM = scanning single-Electron
transistor microscopy

Wikipedia lists 41 different SPM
modes!
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image: Christoph Gerber; copyright Nature Publishing Group
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=PFL - What'’sinan AFM?

cantilevers resonances
Coqtact: 50 kHz deflection
tapping: 300 kHz —

piezo tubes data acquisition
z=2 kHz 20-500 lines/sec
x,y = 400-800 Hz
WWWWY g LT semee data
Pl by voltage y acquisition
»| amplifiers |,
scan command ey
signals
Tz

( «
| Zcontroller
controller loop rate topography
20-100 kHz




=PrL A few principles we should understand

= Optical lever detection
= Piezos

= Feedback

= Force curves
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Optical lever detection

Transduces cantilever deflection into a voltage

Deflection signal
(A+B)-(C+D)
(A+B)+(C+D)

= A very sensitive way to measure
cantilever angle change

= The change of angle is amplified by
the distance from the cantilever tip to
the 4-quadrant photodiode

= Each quadrant creates a current which
is turned into a voltage using a
transimpedance amplifier (I/V
converter)

= The cantilever deflection is the
normalized difference of the top
quadrants minus the bottom quadrants

19
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Piezo scanners

Piezo materials expand when a voltage is applied

Piezo scanners can be:

= Tubes

= Stacks

= Plates

= Monolythic piezo blocks

Or other types of actuation can be
used:

= \/oice coil actuation
= Electrostatic combs

= Linear magnetic motors
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=PFL  Pjezo scanners

Piezo materials expand when a voltage is applied
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Feedback
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Why do we need feedback?

Constant height mode

Contact AFM. Constant height mode

>

Vertical tip position

Cantilever deflection

Why don’t we just drag the cantilever
over the surface?

= Cantilever deflection isn’t linear —
height measurement is distorted

= Force on cantilever is not constant
— tip and sample can get damaged



=PFL What do you do if you are cold?
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Rearranging into a feedback loop

Setpoint
23°

Controller

Actuator

w

Sensor

Current

>
temperature



=P*L  Rearranging into a feedback loop

AFM Error image

A

4

A

AFM topography image

Setpoint

>
23°

Controller

[ z controller J

Actuator

sample

7

Sensor

Current

>
deflection



=PFL  Feedback keeps the tip/sample interaction constant

Contact AFM. Topography imaging

——

!(

~_

Vertical tip position

Cantilever deflection

Benefits of operating in feedback:

= Cantilever deflection varies only
slightly around setpoint

= The amount that the controller has
to move the piezo up or down
approximates the topography of the
sample

27



=PrL

Height image vs error image

Height

Error




=PFL  What Is the meaning of the error signal? ’

= The deflection/error signal is as
much part of the AFM image as the
topography image (also called
height image)!

= |t accentuates edges and features

pecii with small spatial frequencies

Fig. A. Sample and scanning probe.

= The height image combined with
the error image represent the “true
Fig. B. Profile of scanner moving. tOpogl’aphy"

Fig. C. Profile of cantilever deflection
changing.



=PrL

Imaging modes
(dynamic modes)
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Dynamic modes

Reduces tip sample interactions

= Tapping mode™ (intermittent contact mode, amplitude modulation mode,
dynamic mode,...)

= Non-contact mode

= Off resonance modes (Peak Force Tapping™, QI mode™, hopping mode™,
HybriD mode™,...)

31



=PFL  Lennard-Jones potential

The cantilever feels different force regimes

A intermittent contact mode

- < / >

\ t repulsive
———— > 7

/ ‘ attractive

l< > <>

contact mode non-contact mode

32



=PrL

Oscillating approach curves

AM-AFM. Frequency-distance curve

= As the cantilever approaches the
surface it feels different forces (due
to the Leonard Jones potential)

= \When the cantilever is in the
attractive reqgime the resonance
frequency decreases

= When _the cantilever IS in the
repulsive regime the resonance
frequency increases

A

Attractive regime Repulsive regime

Amplitude

Frequency

33



=PFL  Amplitude modulation

(a.k.a. Tapping mode™)

Intermittent contact AFM

34

In t%p ing mode we excite the cantilever at a
fixed frequency Wy, Slightly below its

resonance frequency

As the cantilever approaches into the repulsive
regime, the resonance frequency (of cantilever +
sample force) increases.

At the fixed frequency w, the resulting amplitude
will therefore drop as we enter the repulsive
regime

The amplitude error is used for the feedback
parameter

A

Ao

AA

Asetpoint

Amplitude

8
.
o
.-t
e
----

Y

o0 0 Frequency
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=P*L  Phase imaging

In tapping mode
e

Amplitude
Phase

—>>

%Z’O %. Frequency

= The phase difference between the cantilever drive signal and the cantilever oscillation
is called the “phase signal”

= The resonance shift Aw also introduces a phase shift Ag at the driving frequency wg;ive

= This shift could also be used for feedback, but...

= ... other factors such as materials properties affect phase as well




=PrL

Phase Imaging

In tapping mode

W

AM-AFM. Phase-distance curve

’l'/ R

36

= The phase signal “represents” the damping
that the cantilever feels due to the tip sample
interaction

= This damping can be due to topography
(especially side walls)

= Or it could be due to damping by the sample
material



=PrL

Force Curves
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Tip sample Interactions "

Force curves

There are many forces that can act between the tip and the sample
= Van Der Waals forces (attractive)

= Pauli repulsion (repulsive)

= Electrostatic forces (attractive or repulsive)

= Capillary forces (attractive)

= Magnetic forces (attractive or repulsive)

We can measure what forces act on a cantilever as a function of distance from
the surface by measuring a Force Curve
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=PFL  Force curves

s av— Force curves can tell us a lot about the tip
o sample interaction:

= What is the adhesion of tip to sample
= What is the hardness of the sample
= What is the energy dissipation per cycle

Or about our measurement setup

= What is the deflection sensitivity (how many
nm do we have to deflect the cantilever to
measure 1V shift in the 4-quadrant
photodiode)

-10 0 10 A°




=PFL  Force volume mode

Creating mechanical properties maps
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=PFL  Single molecule force spectroscopy

Force curves as a tool for single molecule mechanics

force

extension
\/&\
_ extension

force
=
N
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Self-assembly and defect healing in DNA latices

In collaboration with Prof. Maarje Bastings, EPFL






Characterization of defect formation and healing

W

=== Pentagon
= Hexagon
=== Heptagon




EPFL Centrioles are at the heart of the mitotic spindle




ANE AN IR Rl f the centrioles .

|

Guichard et al. Science Vol. 337, Issue 6094, pp. 553, 2012
Hilbert et al, Nature Cell Biology, vol. 18, num. 4, p. 393-+, 2016.
Guichard et al, Nature Communications, vol. 8, 2017.
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Nievergelt et al. Nat. Nanotechnol. 2018




EPFL  Multiple pathways for SAS-6 cartwheel assembly




=PEL Measurement of k,,, and k

Measured the time t, between two successive association events




EPFL  Automatic classification
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EPFL Bacterial Nanoscopy:
A closer look at the growth and division of M.Smegmati's




EPFL  Verybasic things we don't know
about Mycobacteria...

How do Mycobacteria grow?

How do Mycobacteria divide?



Adapted from:
Santi,..., McKinney, Nat..Communications 20 | 3 4, Article number: 2470
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What Happens During Cell Seperation?

Odermatt et al. Nature Physics 2019



m
'y |

57



=PFL  Tenslle stress Induced stiffening of the cell wall?

=
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Odermatt et al. Nature Physics 2019
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Hypothesis:
Cells separate once the tensile stress in

the cell wall exceeds the ultimate tensile
strength of the cell wall material
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Mechanically induced cell

18 min ), 23 min
post-PCF post-PCF

35 min
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Odermatt et al. Nature Physics 2019
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Hypothesis:

Cells separate once the tensile stress in
the cell wall exceeds the ultimate tensile
strength of the cell wall material

Why does the cell need hydrolases?



EPFL RipA Depletion Prevents Natural cell Separation

Hett EC et al, (2008) A Mycobacterial Enzyme Odermat et al. in preparation
Essential for Cell Division Synergizes with




EPFL Mechanical stress can make up for missing enzymes

Odermatt et al. Nature Physics 2019




AFM is a versatile tool for studying biological samples at
high resolution in physiological conditions

‘ High-speed AFM can be used to image single molecule
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